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Outline

Effects of Radiation Must be Considered in Facility
« Radioisotopes in Spent Fuel  Design (Shielding and Materials of Construction) and

e Shielding Chemical Prof:ess (Rdiolysis)

e Concepts
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e Evaluation Methodologies
e Radiolysis
e Concepts

e Radiolysis Effects in Separations Process
Solutions/Materials

e Radiation Effects on Materials

e Concepts

e Radiation Effects on Seal and Gasket . o
Materials Overview of Radiation Effects on

Materials and Systems Relevant to
Nuclear Fuel Cycle Separations is
Presented

e Radiation Effects on Structural Materials
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Radioisotopes in Spent Nuclear Fuel

Example of Research Reactor
Spent Nuclear Fuel —

e Radioisotopes include

e Alpha Emitters*

e Beta Emitters*

e Gamma Emitters

e Spontaneous Neutron Emitters

e Secondary Reactions (e.g. (o, n))

e Fuel Isotope Content
Dependent on Irradiation &
Decay Times

*There are few pure Alpha or Beta emitters, Gamma emission is concomitant

Epgores o
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Radioisotopes in Spent Nuclear Fuel, CONT’D

Example of Research Reactor
Spent Nuclear Fuel —

Assembly Activity vs. Decay Time

e Materials Test Reactor LE+07
Design Assembly L
1.E+06
e HFR Petten Assembly #F1369 ;.05
e 93% Enriched 3 1E00s ‘\\
e 484 gm total U initial 216403 —+-total activity Act
e 158 Day Irradiation in 50 MW < 1E#2 \ T lotalaciviy PP
Reactor with 211 1.E+01 ——— . .
MWD/assembly, 58% Burn-up | ;g0

- 0 50 100 150 200 250

M = WA VT MARK
é ’?‘3 Hh active waste, L+86 .
_______ R < Decay Time (days)
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Radioisotopes in Spent Nuclear Fuel, CONT’D

Spent Nuclear Fuel, High Activity Actinide Curi Fission

Radioisotopes — ctinide Curies  proqyct Curies
;hgg; g-gig-gj Sr89  1.21E+03
a .54E-04 5r90 6.84E+02
e HFR Petten Assembly #F1369 U235  3.95E-04 vop M
e ORIGEN-S Code for Isotopic U236  2.69E-03 Y91 2.25E+03
Analysis U237  1.34E-04 Zr95  3.09E+03
Np237 6.34E-04 Nb95 6.28E+03
e 209 Days Cool Np239 1.06E-04 Ru103  3.33E+02
Pu236 1.36E-04 Rh103m 3.33E+02
e Radioisotope Content Pu238 1.57E+00 Ru106  6.81E+02

. _ _ Pu239 325E-02 Rh106  6.81E+02
e Actinides with > 10 Ci pu240  349E.0p Cs134  3.35E+402
e Fission Products with > 102Ci  Pu241  5.54E+00 5137 ~ 0.91E+02
Am241  7.32E-03 Ba137m 6.53E+02

e Note: Lists Do Not Include the am243 1.06E-04 €141  2.86E+02

. Ce144  9.59E+03
Long-Lived Isotopes Cm242 1.42E-01 5444 9 59E+03

Important for Sequestration in  Cm244  2.80E-03 pr144m 1.34E+02

a Waste Form (e.g. Tc-99, Zr-  total 7.34E+00 Pm147 1.83E+03
total 3.96E+04
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Shielding — Concepts

Penetrating Distances

Lo/

LI Paper Plastic Lead Concrete
e Alpha ]
"_1[5; Beta N
1 Gamma and X-rays
0¥
Ton_ Meutron
O
Type of Characteristics Range in Shield Hazards Source
lonizing Air
Radiation
Alpha Large mass, +2 Very short, Paper, skin Internal Pu, U
charge 1- 2iinches
Beta Small mass, -1 Short, 10 feet Plastic, glass, Internal, external Fission &
charge metal skin & eyes activation
products
Gamma/x-ray No mass or Several 100 Lead, steel, Whole Body Fission &
charge, photon feet concrete internal or activation
external products
Neutron Mass, no charge Several 100 Water, concrete, Whole Body Cf, neutron
feet plastic internal or sources
external
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Shielding — Concepts, CONT’D

Gamma Ray Interaction with Matter

Photoelectric Effect % E/@/
/

hf E %t a7y
— ¢ + k . % 006
max = © @%@ E |
£ D05
T4
o A !g 00—
- nYy g aosl
Compton Effect A Y 3
h il*—'\dj.\—:\f;.ﬁifj.ﬁi- - g (LK —
A —A=—{(1-cos0) 2 omf
MeC "
il
. . Nucleus ""'--..-IEIeclron (e’
Pair PrOd uction A5\ Fig. .18 The mass attenuation coefficients of lead as a function

' of ¥-ray encrgy.

hf >2mc*=1.02MeV .o

@ SRNL |

Ref: J.R. Lamarsh, Introduction to Nuclear Engineering, Addison-Wesley,
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Shielding — Evaluation Methodologies

Gamma Radiation — Exposure Rate for Flux at
Initial Energy E,

e Exposure Rate With No Shield:

Xo =0.0659E, (1, / p)aic ¥y (mR/hr)
e Exposure Rate With Shield:

X =0.0659E, (1, / p),. #,  (mRn)

e With Mass Absorption Coefficient, (1,/p)air

Prosiios
P2
£ (=
S "= :
& L el S En
— B, O & e = cieanuy s
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Shielding — Evaluation Methodologies, CONT'D

Gamma Radiation — Buildup Flux

e Scattered Radiation is Built-Up at
Lower Energies from Compton-Scattered
Radiation and Bremsstrahlung
(deceleration of electrons from Compton,
Photoelectric, and Pair-Production)

e Buildup Flux:
e For Point Source at Distance R :
— R
Se "B, (uR)
47R?

&, = ¢, x Buildup =

e Buildup Factor:

e Point Source Factor (Taylor Form):
B, (ur) = Ae™" +(1- A)e™"

Mmm

il ED

E, E

Fig. 1L Energy spectrum of
incident w-ray beam.

wHE}

EE

Fig. 1.3 Energy apectrum af y=ravs

emerging from shield

INTRODUCTION TO NUCLEAR FUEL CYCLE CHEMISTRY — NUCLEAR RADIATION °



Shielding — Evaluation Methodologies, CONT'D

Considerations in Neutron Shielding

e Similar Concepts as for Gamma Shielding

e Significant contribution to dose from secondary
photons from inelastic neutron scattering and from
radiative capture

e |sotopic (Rather than Elemental) Composition of
Medium

e Challenges with Shine or Indirect Streaming
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Shielding — Evaluation Methodologies, CONT'D

Deterministic Transport Theory

e Linear Boltzmann Equation is Solved Numerically

e Discrete-ordinate Methods

e Multigroup Form of Transport Equation Integrated over Each Spatial and Directional
Cell of Mesh of Geometry

e Problems with Irregular Shapes and Boundaries where Simplified Techniques such as
Point Kernels with Buildup Cannot be Used

e Can Treat Very Deep Penetration Problems
e ONEDANT, TWODANT, TORT, DANTSYS, PARTISN, XSDRNPM

Monte Carlo Methods

e Simulation Made of Stochastic Particle Migration through the Geometry
e Probability Relationships of Radiation Interacts with the Medium
e No Use of Transport Equations
e Complex Geometry Simulations
e Computationally Very Expensive, Especially for Deep Penetration

e MCNP, MCNPX, KENO V.a, KENO-VI, EGS4, TIGER
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Shielding — Radioactivity Units

Units to Characterize Amount of Radioactivity
e Curies (Ci)
e 1 Ci=3.7 x 10"° decays/sec
e Total or Radionuclide-Specific
e Becquerel (BQq)
» 1 Bq =1 decay/sec
e Total or Radionuclide-Specific
e Decays per Minute per milliliter (dpm/ml)
e Used to Characterize Activity of Solutions

e Total or Radionuclide-Specific

INTRODUCTION TO NUCLEAR FUEL CYCLE CHEMISTRY — NUCLEAR RADIATION @



Shielding — Exposure/Dose Units

fAti Measures Effect On Type of Relates to Conversion
Radla_tlon Radiation
Unit
Roentgen (R) Exposure Air Gamma and x- 1 R =1000
Clkg ray milliroentgen (MR)
1C/kg =3,876 R
rad (Radiation Dose Any Material All Types 1 Gy =100 rad =1 J/kg
Absorbed _
Dose): 10 pGy = 1 mrad
Gray (Gy) 1 Wh/l =2 360,000 rad
rem (Roentgen Dose Man All Types Accounts for 1Sv=100rem
Equwalfent Equivalence Difference in 10 uGy = 1 mrad
Man); Dose and
(Dose Damage
Sievert (Sv) Equivalence 9
= Dose x
Quality
Factor)
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Radiolysis — Concepts

e G-values

e G =# Molecules Produced per 100 eV
absorbed energy

e Dependent on Incident Radiation Type Linear Energy Transfer Concept
e Forward (Radiolytic) vs. Back

Reactions ‘
AN

e Forward: | |
H_(Q __incident radiation o 14 O+ OH, e . H, H,0, H ©6°0%0%9" °¢ N
2 aq ! aq? | 29y 2 ~ un\ °.°:o. o. oo \
®,0 o .0 0% .00 X
e Back:
H+H,0, >OH+H,0 Schematic depicting the formation of H and OH radicals in the
OH +H, > H+H,0 track of a 1-MeV electron (a) and alpha particle (b).

H,+H,0, »>2H,0

@>SRNL

INTRODUCTION TO NUCLEAR FUEL CYCLE CHEMISTRY — NUCLEAR RADIATION @



Radiolysis — Effects in Separations Process Solutions

e Tri-n-butyl Phosphate (TBP)
e [BP Used in PUREX and HM Processes

e Chemical (Hydrolytic) and Radiolytic Reactions Decompose TBP

e Breakdown Sequence: TBP — Dibutyl Phosphoric Acid (HDBP) — Monobutyl
Phosphoric Acid (H,MBP) — Phosphoric Acid (H;PO,)

e Many Hydrocarbons Formed Through Radiolysis of TBP
e Ferrous Sulfamate

e Fe(ll) Used to Reduce Np(V) to Np(IV) and Pu(lV) to Pu(lll) for Subsequent
Separation; Protects Reduced Pu and Np from OH- Radical

e Sulfamate Added to Prevent NO5 Oxidation of Fe(ll)

e Radiolytic Reactions Decompose Fe?* and Sulfamate
e Radiation Effects on lon Exchange Materials

e Various Resin Systems are Used

e Radiation Causes Loss of Exchange Capacity

e Radiation Causes Gas Evolution
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Radiolysis — Effects in Separations Process Solutions, CONT’D

Radiolysis of TBP S ey S B

BALDWIN HpD - SAT'D TEBP

BROODDG— HEIMEM: A% -FREC'D TEBPF/n—-ALIPH DIL.

BURGER - McCLANAHRN: DRY TEPSISOOCTANE

BURGER - McCLAMAHARNT HzD - SAT'D TEPS
ISOOCTAME

BURGER - McCLAMAMAN! D&Y TAP/LSOOCTAME

BURGER - McCLANAKAKN! DRY TEBPSSOLTROL

BURR

HMOLLAND &F 2l.! DAY TAPSn —DODECANE

SRI GROUF: DRY TEP/AMSCO 125 -82

SRL SROUP: HaD- S4T'0 TER/AMSCO 125 - 62

WL LIAMS AND WILKMNSON: TEBPSOLK '§

e Radiolysis of TBP Alone or in
Diluents, Anhydrous or
Water-Saturated Cause
lonized or Excited TBP

ne0obak eocddd

il
I

e Radiolysis Product in

=]
Greatest Yield is HDBP /F,

[
e

TOTAL ACID OR HDBP YIELDS [malecules /100 eV]

e Greater Yield in Anhydrous
TBP than Water-Saturated s

e Anhydrous: G = 3 total acid 'ée “
molecules/100 eV o | ! I | | |

o 200 400 &0 BOO 1000 1200

TEHP CONCENTRATION {(gsL)
e Water-Saturated: G = 1.8

FIGURE &  Corelason of poblished dats for yields of toal acid and HODBEP
H from irrsdiation of THBEP-alif i diluen welwii Moses: 1) *5C wsed as radiagion
total acid molecules/100 eV wource except for s 7 (spent fucl). (2) Venieal bus lengihs for dileent-fe
TEBF comespond,. approcimately, 1o siondard deviatbons. (Dweta takes from Rel-
erences F_ 4,6, 9, 12, and U4 w0 20}

Ref: Chapter 7, “RADIOLYTIC BEHAVIOR,” in Science and Technology of Tributyl Phosphate, Volume
I, Wallace W. Schulz and James D. Navratil, eds., CRC Press, Inc., 1984
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Radiolysis — Effects in Separations Process Solutions, CONT'D

ORNL-DWG 84-1033

Total Degradation of TBP

e [BP Degradation is
Due to Hydrolysis and
Radiolysis

e Strong Effect of
Temperature on TBP
Degradation Rate

TBP DEGRADATION (as g of complexed Pu)

o et
o 0.5 1.0

TIME (d )

Fig: 6. TBP degradation rates due to acid hydrolysis, alpha radiolysis,
and metal-ion—induced hydrolysis at BO°C {shown as =mg of plutonium complexed
by degradation producte for each factor).

Ref: M.H. Lloyd and R.L. Fellows, “Alpha Radiolysis and Other Factors Affecting Hydrolysis of Tributyl
Phosphate,” ORNL/TM-9565, June 1985
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Radiolysis - Effects in Separations Process Solutions, CON

Radiolysis of Ferrous Sulfamate
Fe(SA), or Fe(ll) + (NH,SO;),

e If Fe2* not Present, Quick
Reversion of Np(IV) to Np(V)
and Pu(lll) to Pu(1V)

e High Dose Rate Process
Solution Can Cause Rapid

0.020 " T T T T T

g [ ]
c N -
k= N ]
0010 -
c - .
g n ]
=] = -
0 - -
oF ]

0 8

Time (h)

Fig. 2. Depletion of Fe(ll) from radidlysis by dissolved fission
products of U in actual process solution. Dose
rate =1.5 X10% rad/h, T= ~25°C.

1.1 T T T T T T T T T

D

Depletion of Fe?*

Ref: N.E. Bibler, “Radiolytic Instability of Ferrous Sulfamate in Nuclear Process Solutions,” Nuclear

Technology, Volume 34, August 1977

@ SRNL |

Epgons

Egvirerrnental Moresgersent

%LU T ry L 4 —100
E 09 - B".]t'
§08 1602
& 0.7 - 40 5
306 . _ 120%
« 0.5 T - +4 0

4 1 1 | I | 1 1 ] 1

0 0 1 2 3 4 5 6 7 8 9 10

Fig. 3.

Time (k)

Dependence of the redox potential and fraction of
BINp or P®Pu in the 4+ state on radiolysis by dissolved
fission products of ***U in an actual process solution.
Dose rate = 1.5 X 10* rad/h, T =~25°C, ® = redox
potential, ® = percent Pu(lV), and & = percent Np(IV).
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Radiolysis — Effects in Separations Process Solutions, CONT’D

Radiolysis of Ferrous Sulfamate 0.031- .

Sulfamate

e C0-60 Gamma Irradiator
Used to Investigate
Radiolysis Effects in
Process Solutions

0.02— —

=
c
e
=
™
=
-
g
c
Q
(&

e Both Fe?* and Sulfamate are 00!
Depleted

o ]

0 1.0 2.0
Time (h)
Fig. 1. Depletion of Fe(ll) and sulfamate from o gamma

radiolysis of simulated process solutions. Dose rate =
6.09 X 10° rad/h, T =30 to 37°C, ® = Fe(ll), and
® = sulfamate.

Ref: N.E. Bibler, “Radiolytic Instability of Ferrous Sulfamate in Nuclear Process Solutions,” Nuclear
Technology, Volume 34, August 1977
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Radiolysis — Effects in Separations Process Solutions, CONT’D

Radiolysis of lon
Exchange Media

[ ]

e Doses of 10° to 10° # 700 DOWEX 50X 4 .
Gy Significant to L L T
Synthetic Organic lon 2 sof- P
Exchangers g o

e Polycondensation E
Type Resistant to 8
Radiation Damage, }
but Overall Initial R R
Properties Poor PP e m:rm mf :1-:}'“51:

e Gas Evolution During ~ Fi& A smpariton of tho changs i total cxchango capacity of 4% cross Enked styrene DVB
Radiolysis

sulfonic acid resns (from References 31, 35, and 38)

Ref: K.K.S. Pillay, “A Review of the Radiation Stability of lon Exchange Materials,” Journal of
Radioanalytical and Nuclear Chemisry, Articles, Vol. 102, No. 1 (1986) 247-268.
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Radiation Effects on Materials — Concepts for Polymers

Effects on Polymers
e |rradiation Effects
e Loss of Elasticity and Sealing Ability; Gas Evolution; Leaching
e Important Factors
e Total Dose (rad); Dose Rate
e Presence of O,
e Degradation Mechanisms — One Mechanism Frequently Predominates

e Scission: Molecular Bonds Ruptured - Reduces the Molecular
Weight and Strength; Gas Evolution

e Cross-Linking: Polymer Molecules Linked to Form Large 3D
Molecular Networks — Causes Hardening and Embrittlement

e Enhanced Oxidation
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Radiation Effects on Materials — Concepts for Polymers, CONT'D

Mdaserial Kadistien Stabilley Commeenls

Effects on Polymers = =
y ] Folyeihylene., various densities Crood Excellem | High-density grades not as stable as medium- or lovw density grades.
] Polyamides (nylon) Crood | Biylons 10, 11, 12 &t are morne stable than 6. Film and fiber are less nesistanl.
C O N T D Polyimidis Excellin |

Podysullom: cillim Biaural material i@ yellow
Polypheny line sullide Excillen
- - - = Polyviny| chlomde (PVO) oo malesular-wel ghit
rected rdiation
. Formmlagions are available.
Polyvinyl chlomde Polyvimd acetate o Less resistant than PVC.

.
P re d | Ct rokywingidome cichloaiie [Sarery o e
Crowod Exeellem

Styreneacylonitrile (AN

Polycarboame Crood Excellem Wellows. Mechanical properties not greatly affected: colorcomected mdiation
Formulatiom an: availabie.

"
Polypropylene. navural Puoe'Fair Physical propemics grealy mduced when imadised. Radistion-sabilized gracdes,
i} O r a r O n - a r O n a I n S Polypropyene. stabilized wiilizing high mokecular copurlymerized ad alkayed with
polyeihylens. should be sed et radiation applications, High-dosc-mge
E-beam peocessing may reduce oxidative degrodation

(Backbones), Cross-Linking e e et T et oty ot T

. " Perfluoro alkoxy (FEA) Poor
. Pulychlomtriflnoreethy lene

WI CCur i daltached 10 Gt Eacele
) Pulyingl Muarick (FYFY Ged Exeellem

Pulyviny ey Muoride (PVTHY G Exeellem

Scission will Occur at Tetra-

Flusrinaed ciliylene propaiene

Substituted Carbon = - T —

Esters

Cellulnse scetate propiomie
Cellulnse scetate butyre
Cellulose. paper, candboand

e Polymers with Aromatic

ARE

Molecules More Resistant T

physical preperies.

. .
tl I a I I A I I I l atl C Liquid erystal polymer {LCFy Excellem Commercial LOPs excellent; natural LOPs mot stable.
Polyesters Crowcd Excellem PET not s radiation stable as PET.

Thermosets:
Phemolics Excellem om of mineral fillers.
Epoivs Excellem

PO I St re n eS Polyestors Execellim
. y y Ayl diglyosl carbanats (palyesen Excellem

Podywarcihanes:

Dremdistion coees embrinlement. Color changes have boen moted Cvellom 1 grecn).

High-impasct grades are ool a3 cadiation resistant as standand-impact gradis,

al or gl fikems

wncellnt cptical propenis afor rdiation

Adiphatic Excellem
" Aromnabic oo Excellem Daskening can coour. Possible breakdonwn products could be denived.
Polyamides
. Urethane Excellen
EFDM Excellent
ral mibber Crood Excellem
k Chood Excillem Driggaloms

1= The addditiom of aromatic plasticias renders the material mors

Polychhoprene (nooprenc il s
sones are mrore stable ithan e

e Loss of Mechanical
Properties Important . - ShirEerad

c
<ulfonated polyethylene Foor
E Offfice of

sones, Flatlnum
can eh

;:m;—l Poor Friable. sheds pariculaies.
Refi: K deddermmerichyiRADIATION STERILZATION, Polymer Materials Selection for Radiation-
Sterilized Products,” Medical Device & Diagnostic Industry, Feb 2000, p. 78
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Radiation Effects on Materials — Concepts for Polymers, CONT'D

106 PP BT BTN S P |
Dose Rate Sensitivity ]

e Polymers are Susceptible to
Oxidation, which is Diffusion-
Limited

e High Dose Rate Exposures
May Not be Indicative of
Aging in Low Dose Rate
Environments T T —

o e 1 10" 10° 10' 102 10° 10
e Materials “Qualified” for 40- .
: ) : SHIFTED DOSE RATE, GY/ (50°C Ref)
year Service Life May Fail

Sooner Dose to 50% elongation loss in PVC cable insulation
(Data shifted by superposition to a reference temperature of 50°C)

Ref: NUREG/CR-2877, SAND81-2613, “Investigation of Cable Deterioration in
the Containment Building of the Savannah River Nuclear Reactor”, K.T. Gillen,
R.L. Clough, L.H. Jones, August 1982.
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Radiation Effects on Seal/Gasket/Coating Materials In
Separations Service

Empirical Knowledge Base — In Vitro Testing and Service
Experience

e Fluoropolymers — needed for chemical resistance tes1
e Teflon —initial damage at 1-5E4 rad, severe damage at 1-10 Mrad
e Jumper Gaskets: Teflon-asbestos (functional to 100-1000 Mrad)

e Viton® B — FKM fluoroelastomer, older formulations with lead oxide, not
suitable for TBP solutions

e Kalrez® FFKM perfluoroelastomer — expensive, acids at high temp
e Halar®/ECTFE — low permeability, possible chloride release
e Tefzel®/ETFE copolymer — used in HLW transfer lines, ball valves

e Kynar®/PVDF — most resistant fluoropolymer, less resistant to strong
nitric acid or NaOH solutions (stress-cracking).
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Radiation Effects on Materials — Concepts for Metals

Effects on Metals

e Irradiation Effects

e Radiation Hardening & Embrittlement at Low Irradiation
Temperatures (T, <03 T, )

e |Important Factors in General
e Total Displacement Damage and Damage Rate
e Irradiation Temperature
e Spectral Effects

e Degradation Mechanisms

e “Black Spot” Damage at Low Irradiation Temperatures

INTRODUCTION TO NUCLEAR FUEL CYCLE CHEMISTRY — NUCLEAR RADIATION e



Radiation Effects on Materials — Concepts for Metals, CONT'D

Radiation Damage Phenomena: n-Irradiation of Crystalline Materials

Primary Knock-On Atoms Pmm\
RADIATION
CASCADE(I)
\

e Neutron transfers PARTIGLE
Energy to Lattice atom

e One Neutron Can create
Many PKAS

Cascades from PKAs
e Create Free Defects

e Recombination
pASCADE(Z)

e Dislocation Loops

IRRADIATED
MATERIAL

e Stacking Fault
Tetrahedra

CASCADE(3)
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Radiation Effects on Materials — Concepts for Metals, CONT'D

Displacements per Atom Formulation

v(T) = 0 displacements  for T<E, E4 = threshold
energy to cause
v =1 for E4<T<2E, a displacement

from a crystalline
position

dpa ) _ j O(E)dE j V(T) d“é'i’ Dyt

v(T) = 0.8T/(2E) for T>2E,

SEC

Displacement Rate for Elastic Collision Events

INTRODUCTION TO NUCLEAR FUEL CYCLE CHEMISTRY — NUCLEAR RADIATION e
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Radiation Effects on Metals in Separations Systems

Displacements
from:

e Alpha/Beta —
Near Surface

e Spontaneous
Neutrons —
Very Low
Dose

e Gamma —
Very Low

Dose

Displacement Cross Section,

mb/electron

1000.00

100.00

10.00

1.00 5

0.10

Displacement Cross Section for Gamma on Steel

/

=40 eV Displacement Energy

— 28 eV Displacement Energy

]
/

00 10 20 3.0 40 50 6.0 7.0 80 9.0 10.0 11.0

Gamma Energy, MeV
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Radiation Effects on Metals in Separations Systems, CONT’D

No Significant Impact to Mechanical Properties Expected for Separations Tanks

Defect Cluster Density in Neutron-Irradiated Stainless Steel Coarsens Slightly Between 0.06 and 0.5 dpa, Tirr=120°C

DEFECT CLUSTER SIZE DISTRIBUTION IN
DEFECT CLUSTER SIZE DISTRIBUTION IN NEUTRON IRRADIATED STAINLESS STEEL

NEUTRON IRRADIATED STAINLESS STEEL

35 T T | T I T T T ! ' ! ' ' U
20 =
304 STAINLESS STEEL
30 — 0.52 dpa, 120°C
N = 5.5x 10%%/m8
304 STAINLESS STEEL d=2.7nm
0.065 dpa, 120°C
o5 L N = 6.0x10%¥/m? N
d < 1.66nm 15 |- _
) = —
g 5 Ac = MaubV(Nd)
6 20 1 5
aﬁ —
£ = . :
= o Radiation Hardening
=4 W 4p =
L =
215 13 Due to Defect Clusters
L o
o w
L
10 .
5
5 —
0 - ' ' ' ' 0 e [ BT | e i : .
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

IMAGE WIDTH (nm) IMAGE WIDTH (nm)

Ref: S.J. Zinkle and R.L. Sindelar, "Defect Microstructures in Neutron-Irradiated Copper and Stainless
Steel," J. Nucl. Mat. 155-157 (1988) p. 1196
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